Welcome to Delta Lake’s Python documentation page¶
DeltaTable¶
-
class
delta.tables.
DeltaTable
(spark: pyspark.sql.session.SparkSession, jdt: JavaObject)¶ Main class for programmatically interacting with Delta tables. You can create DeltaTable instances using the path of the Delta table.:
deltaTable = DeltaTable.forPath(spark, "/path/to/table")
In addition, you can convert an existing Parquet table in place into a Delta table.:
deltaTable = DeltaTable.convertToDelta(spark, "parquet.`/path/to/table`")
New in version 0.4.
-
toDF
() → pyspark.sql.dataframe.DataFrame¶ Get a DataFrame representation of this Delta table.
New in version 0.4.
-
alias
(aliasName: str) → delta.tables.DeltaTable¶ Apply an alias to the Delta table.
New in version 0.4.
-
generate
(mode: str) → None¶ Generate manifest files for the given delta table.
- Parameters
mode –
mode for the type of manifest file to be generated The valid modes are as follows (not case sensitive):
- ”symlink_format_manifest”: This will generate manifests in symlink format
for Presto and Athena read support.
See the online documentation for more information.
New in version 0.5.
-
delete
(condition: Union[pyspark.sql.column.Column, str, None] = None) → None¶ Delete data from the table that match the given
condition
.Example:
deltaTable.delete("date < '2017-01-01'") # predicate using SQL formatted string deltaTable.delete(col("date") < "2017-01-01") # predicate using Spark SQL functions
- Parameters
condition (str or pyspark.sql.Column) – condition of the update
New in version 0.4.
-
update
(condition: Union[pyspark.sql.column.Column, str, None] = None, set: Optional[Dict[str, Union[str, pyspark.sql.column.Column]]] = None) → None¶ Update data from the table on the rows that match the given
condition
, which performs the rules defined byset
.Example:
# condition using SQL formatted string deltaTable.update( condition = "eventType = 'clck'", set = { "eventType": "'click'" } ) # condition using Spark SQL functions deltaTable.update( condition = col("eventType") == "clck", set = { "eventType": lit("click") } )
- Parameters
condition (str or pyspark.sql.Column) – Optional condition of the update
set (dict with str as keys and str or pyspark.sql.Column as values) – Defines the rules of setting the values of columns that need to be updated. Note: This param is required. Default value None is present to allow positional args in same order across languages.
New in version 0.4.
-
merge
(source: pyspark.sql.dataframe.DataFrame, condition: Union[str, pyspark.sql.column.Column]) → delta.tables.DeltaMergeBuilder¶ Merge data from the source DataFrame based on the given merge condition. This returns a
DeltaMergeBuilder
object that can be used to specify the update, delete, or insert actions to be performed on rows based on whether the rows matched the condition or not. SeeDeltaMergeBuilder
for a full description of this operation and what combinations of update, delete and insert operations are allowed.Example 1 with conditions and update expressions as SQL formatted string:
deltaTable.alias("events").merge( source = updatesDF.alias("updates"), condition = "events.eventId = updates.eventId" ).whenMatchedUpdate(set = { "data": "updates.data", "count": "events.count + 1" } ).whenNotMatchedInsert(values = { "date": "updates.date", "eventId": "updates.eventId", "data": "updates.data", "count": "1" } ).execute()
Example 2 with conditions and update expressions as Spark SQL functions:
from pyspark.sql.functions import * deltaTable.alias("events").merge( source = updatesDF.alias("updates"), condition = expr("events.eventId = updates.eventId") ).whenMatchedUpdate(set = { "data" : col("updates.data"), "count": col("events.count") + 1 } ).whenNotMatchedInsert(values = { "date": col("updates.date"), "eventId": col("updates.eventId"), "data": col("updates.data"), "count": lit("1") } ).execute()
- Parameters
source (pyspark.sql.DataFrame) – Source DataFrame
condition (str or pyspark.sql.Column) – Condition to match sources rows with the Delta table rows.
- Returns
builder object to specify whether to update, delete or insert rows based on whether the condition matched or not
- Return type
New in version 0.4.
-
vacuum
(retentionHours: Optional[float] = None) → pyspark.sql.dataframe.DataFrame¶ Recursively delete files and directories in the table that are not needed by the table for maintaining older versions up to the given retention threshold. This method will return an empty DataFrame on successful completion.
Example:
deltaTable.vacuum() # vacuum files not required by versions more than 7 days old deltaTable.vacuum(100) # vacuum files not required by versions more than 100 hours old
- Parameters
retentionHours – Optional number of hours retain history. If not specified, then the default retention period of 168 hours (7 days) will be used.
New in version 0.4.
-
history
(limit: Optional[int] = None) → pyspark.sql.dataframe.DataFrame¶ Get the information of the latest limit commits on this table as a Spark DataFrame. The information is in reverse chronological order.
Example:
fullHistoryDF = deltaTable.history() # get the full history of the table lastOperationDF = deltaTable.history(1) # get the last operation
- Parameters
limit – Optional, number of latest commits to returns in the history.
- Returns
Table’s commit history. See the online Delta Lake documentation for more details.
- Return type
pyspark.sql.DataFrame
New in version 0.4.
-
detail
() → pyspark.sql.dataframe.DataFrame¶ Get the details of a Delta table such as the format, name, and size.
Example:
detailDF = deltaTable.detail() # get the full details of the table
:return Information of the table (format, name, size, etc.) :rtype: pyspark.sql.DataFrame
Note
Evolving
New in version 2.1.
-
classmethod
convertToDelta
(sparkSession: pyspark.sql.session.SparkSession, identifier: str, partitionSchema: Union[str, pyspark.sql.types.StructType, None] = None) → delta.tables.DeltaTable¶ Create a DeltaTable from the given parquet table. Takes an existing parquet table and constructs a delta transaction log in the base path of the table. Note: Any changes to the table during the conversion process may not result in a consistent state at the end of the conversion. Users should stop any changes to the table before the conversion is started.
Example:
# Convert unpartitioned parquet table at path 'path/to/table' deltaTable = DeltaTable.convertToDelta( spark, "parquet.`path/to/table`") # Convert partitioned parquet table at path 'path/to/table' and partitioned by # integer column named 'part' partitionedDeltaTable = DeltaTable.convertToDelta( spark, "parquet.`path/to/table`", "part int")
- Parameters
sparkSession (pyspark.sql.SparkSession) – SparkSession to use for the conversion
identifier (str) – Parquet table identifier formatted as “parquet.`path`”
partitionSchema – Hive DDL formatted string, or pyspark.sql.types.StructType
- Returns
DeltaTable representing the converted Delta table
- Return type
New in version 0.4.
-
classmethod
forPath
(sparkSession: pyspark.sql.session.SparkSession, path: str, hadoopConf: Dict[str, str] = {}) → delta.tables.DeltaTable¶ Instantiate a
DeltaTable
object representing the data at the given path, If the given path is invalid (i.e. either no table exists or an existing table is not a Delta table), it throws a not a Delta table error.- Parameters
sparkSession (pyspark.sql.SparkSession) – SparkSession to use for loading the table
hadoopConf (optional dict with str as key and str as value.) – Hadoop configuration starting with “fs.” or “dfs.” will be picked up by DeltaTable to access the file system when executing queries. Other configurations will not be allowed.
- Returns
loaded Delta table
- Return type
Example:
hadoopConf = {"fs.s3a.access.key" : "<access-key>", "fs.s3a.secret.key": "secret-key"} deltaTable = DeltaTable.forPath( spark, "/path/to/table", hadoopConf)
New in version 0.4.
-
classmethod
forName
(sparkSession: pyspark.sql.session.SparkSession, tableOrViewName: str) → delta.tables.DeltaTable¶ Instantiate a
DeltaTable
object using the given table or view name. If the given tableOrViewName is invalid (i.e. either no table exists or an existing table is not a Delta table), it throws a not a Delta table error.The given tableOrViewName can also be the absolute path of a delta datasource (i.e. delta.`path`), If so, instantiate a
DeltaTable
object representing the data at the given path (consistent with the forPath).- Parameters
sparkSession – SparkSession to use for loading the table
tableOrViewName – name of the table or view
- Returns
loaded Delta table
- Return type
Example:
deltaTable = DeltaTable.forName(spark, "tblName")
New in version 0.7.
-
classmethod
create
(sparkSession: Optional[pyspark.sql.session.SparkSession] = None) → delta.tables.DeltaTableBuilder¶ Return
DeltaTableBuilder
object that can be used to specify the table name, location, columns, partitioning columns, table comment, and table properties to create a Delta table, error if the table exists (the same as SQL CREATE TABLE).See
DeltaTableBuilder
for a full description and examples of this operation.- Parameters
sparkSession – SparkSession to use for creating the table
- Returns
an instance of DeltaTableBuilder
- Return type
Note
Evolving
New in version 1.0.
-
classmethod
createIfNotExists
(sparkSession: Optional[pyspark.sql.session.SparkSession] = None) → delta.tables.DeltaTableBuilder¶ Return
DeltaTableBuilder
object that can be used to specify the table name, location, columns, partitioning columns, table comment, and table properties to create a Delta table, if it does not exists (the same as SQL CREATE TABLE IF NOT EXISTS).See
DeltaTableBuilder
for a full description and examples of this operation.- Parameters
sparkSession – SparkSession to use for creating the table
- Returns
an instance of DeltaTableBuilder
- Return type
Note
Evolving
New in version 1.0.
-
classmethod
replace
(sparkSession: Optional[pyspark.sql.session.SparkSession] = None) → delta.tables.DeltaTableBuilder¶ Return
DeltaTableBuilder
object that can be used to specify the table name, location, columns, partitioning columns, table comment, and table properties to replace a Delta table, error if the table doesn’t exist (the same as SQL REPLACE TABLE).See
DeltaTableBuilder
for a full description and examples of this operation.- Parameters
sparkSession – SparkSession to use for creating the table
- Returns
an instance of DeltaTableBuilder
- Return type
Note
Evolving
New in version 1.0.
-
classmethod
createOrReplace
(sparkSession: Optional[pyspark.sql.session.SparkSession] = None) → delta.tables.DeltaTableBuilder¶ Return
DeltaTableBuilder
object that can be used to specify the table name, location, columns, partitioning columns, table comment, and table properties replace a Delta table, error if the table doesn’t exist (the same as SQL REPLACE TABLE).See
DeltaTableBuilder
for a full description and examples of this operation.- Parameters
sparkSession – SparkSession to use for creating the table
- Returns
an instance of DeltaTableBuilder
- Return type
Note
Evolving
New in version 1.0.
-
classmethod
isDeltaTable
(sparkSession: pyspark.sql.session.SparkSession, identifier: str) → bool¶ Check if the provided identifier string, in this case a file path, is the root of a Delta table using the given SparkSession.
- Parameters
sparkSession – SparkSession to use to perform the check
path – location of the table
- Returns
If the table is a delta table or not
- Return type
bool
Example:
DeltaTable.isDeltaTable(spark, "/path/to/table")
New in version 0.4.
-
upgradeTableProtocol
(readerVersion: int, writerVersion: int) → None¶ Updates the protocol version of the table to leverage new features. Upgrading the reader version will prevent all clients that have an older version of Delta Lake from accessing this table. Upgrading the writer version will prevent older versions of Delta Lake to write to this table. The reader or writer version cannot be downgraded.
See online documentation and Delta’s protocol specification at PROTOCOL.md for more details.
New in version 0.8.
-
restoreToVersion
(version: int) → pyspark.sql.dataframe.DataFrame¶ Restore the DeltaTable to an older version of the table specified by version number.
Example:
io.delta.tables.DeltaTable.restoreToVersion(1)
- Parameters
version – target version of restored table
- Returns
Dataframe with metrics of restore operation.
- Return type
pyspark.sql.DataFrame
New in version 1.2.
-
restoreToTimestamp
(timestamp: str) → pyspark.sql.dataframe.DataFrame¶ Restore the DeltaTable to an older version of the table specified by a timestamp. Timestamp can be of the format yyyy-MM-dd or yyyy-MM-dd HH:mm:ss
Example:
io.delta.tables.DeltaTable.restoreToTimestamp('2021-01-01') io.delta.tables.DeltaTable.restoreToTimestamp('2021-01-01 01:01:01')
- Parameters
timestamp – target timestamp of restored table
- Returns
Dataframe with metrics of restore operation.
- Return type
pyspark.sql.DataFrame
New in version 1.2.
-
optimize
() → delta.tables.DeltaOptimizeBuilder¶ Optimize the data layout of the table. This returns a
DeltaOptimizeBuilder
object that can be used to specify the partition filter to limit the scope of optimize and also execute different optimization techniques such as file compaction or order data using Z-Order curves.See the
DeltaOptimizeBuilder
for a full description of this operation.Example:
deltaTable.optimize().where("date='2021-11-18'").executeCompaction()
- Returns
an instance of DeltaOptimizeBuilder.
- Return type
New in version 2.0.
-
-
class
delta.tables.
DeltaMergeBuilder
(spark: pyspark.sql.session.SparkSession, jbuilder: JavaObject)¶ Builder to specify how to merge data from source DataFrame into the target Delta table. Use
delta.tables.DeltaTable.merge()
to create an object of this class. Using this builder, you can specify any number ofwhenMatched
,whenNotMatched
andwhenNotMatchedBySource
clauses. Here are the constraints on these clauses.Constraints in the
whenMatched
clauses:The condition in a
whenMatched
clause is optional. However, if there are multiplewhenMatched
clauses, then only the last one may omit the condition.When there are more than one
whenMatched
clauses and there are conditions (or the lack of) such that a row satisfies multiple clauses, then the action for the first clause satisfied is executed. In other words, the order of thewhenMatched
clauses matters.If none of the
whenMatched
clauses match a source-target row pair that satisfy the merge condition, then the target rows will not be updated or deleted.If you want to update all the columns of the target Delta table with the corresponding column of the source DataFrame, then you can use the
whenMatchedUpdateAll()
. This is equivalent to:whenMatchedUpdate(set = { "col1": "source.col1", "col2": "source.col2", ... # for all columns in the delta table })
Constraints in the
whenNotMatched
clauses:The condition in a
whenNotMatched
clause is optional. However, if there are multiplewhenNotMatched
clauses, then only the last one may omit the condition.When there are more than one
whenNotMatched
clauses and there are conditions (or the lack of) such that a row satisfies multiple clauses, then the action for the first clause satisfied is executed. In other words, the order of thewhenNotMatched
clauses matters.If no
whenNotMatched
clause is present or if it is present but the non-matching source row does not satisfy the condition, then the source row is not inserted.If you want to insert all the columns of the target Delta table with the corresponding column of the source DataFrame, then you can use
whenNotMatchedInsertAll()
. This is equivalent to:whenNotMatchedInsert(values = { "col1": "source.col1", "col2": "source.col2", ... # for all columns in the delta table })
Constraints in the
whenNotMatchedBySource
clauses:The condition in a
whenNotMatchedBySource
clause is optional. However, if there are multiplewhenNotMatchedBySource
clauses, then only the lastwhenNotMatchedBySource
clause may omit the condition.Conditions and update expressions in
whenNotMatchedBySource
clauses may only refer to columns from the target Delta table.When there are more than one
whenNotMatchedBySource
clauses and there are conditions (or the lack of) such that a row satisfies multiple clauses, then the action for the first clause satisfied is executed. In other words, the order of thewhenNotMatchedBySource
clauses matters.If no
whenNotMatchedBySource
clause is present or if it is present but the non-matching target row does not satisfy any of thewhenNotMatchedBySource
clause condition, then the target row will not be updated or deleted.
Example 1 with conditions and update expressions as SQL formatted string:
deltaTable.alias("events").merge( source = updatesDF.alias("updates"), condition = "events.eventId = updates.eventId" ).whenMatchedUpdate(set = { "data": "updates.data", "count": "events.count + 1" } ).whenNotMatchedInsert(values = { "date": "updates.date", "eventId": "updates.eventId", "data": "updates.data", "count": "1", "missed_count": "0" } ).whenNotMatchedBySourceUpdate(set = { "missed_count": "events.missed_count + 1" } ).execute()
Example 2 with conditions and update expressions as Spark SQL functions:
from pyspark.sql.functions import * deltaTable.alias("events").merge( source = updatesDF.alias("updates"), condition = expr("events.eventId = updates.eventId") ).whenMatchedUpdate(set = { "data" : col("updates.data"), "count": col("events.count") + 1 } ).whenNotMatchedInsert(values = { "date": col("updates.date"), "eventId": col("updates.eventId"), "data": col("updates.data"), "count": lit("1"), "missed_count": lit("0") } ).whenNotMatchedBySourceUpdate(set = { "missed_count": col("events.missed_count") + 1 } ).execute()
New in version 0.4.
-
whenMatchedUpdate
(condition: Union[pyspark.sql.column.Column, str, None] = None, set: Optional[Dict[str, Union[str, pyspark.sql.column.Column]]] = None) → delta.tables.DeltaMergeBuilder¶ Update a matched table row based on the rules defined by
set
. If acondition
is specified, then it must evaluate to true for the row to be updated.See
DeltaMergeBuilder
for complete usage details.- Parameters
condition (str or pyspark.sql.Column) – Optional condition of the update
set (dict with str as keys and str or pyspark.sql.Column as values) – Defines the rules of setting the values of columns that need to be updated. Note: This param is required. Default value None is present to allow positional args in same order across languages.
- Returns
this builder
New in version 0.4.
-
whenMatchedUpdateAll
(condition: Union[pyspark.sql.column.Column, str, None] = None) → delta.tables.DeltaMergeBuilder¶ Update all the columns of the matched table row with the values of the corresponding columns in the source row. If a
condition
is specified, then it must be true for the new row to be updated.See
DeltaMergeBuilder
for complete usage details.- Parameters
condition (str or pyspark.sql.Column) – Optional condition of the insert
- Returns
this builder
New in version 0.4.
-
whenMatchedDelete
(condition: Union[pyspark.sql.column.Column, str, None] = None) → delta.tables.DeltaMergeBuilder¶ Delete a matched row from the table only if the given
condition
(if specified) is true for the matched row.See
DeltaMergeBuilder
for complete usage details.- Parameters
condition (str or pyspark.sql.Column) – Optional condition of the delete
- Returns
this builder
New in version 0.4.
-
whenNotMatchedInsert
(condition: Union[pyspark.sql.column.Column, str, None] = None, values: Optional[Dict[str, Union[str, pyspark.sql.column.Column]]] = None) → delta.tables.DeltaMergeBuilder¶ Insert a new row to the target table based on the rules defined by
values
. If acondition
is specified, then it must evaluate to true for the new row to be inserted.See
DeltaMergeBuilder
for complete usage details.- Parameters
condition (str or pyspark.sql.Column) – Optional condition of the insert
values (dict with str as keys and str or pyspark.sql.Column as values) – Defines the rules of setting the values of columns that need to be updated. Note: This param is required. Default value None is present to allow positional args in same order across languages.
- Returns
this builder
New in version 0.4.
-
whenNotMatchedInsertAll
(condition: Union[pyspark.sql.column.Column, str, None] = None) → delta.tables.DeltaMergeBuilder¶ Insert a new target Delta table row by assigning the target columns to the values of the corresponding columns in the source row. If a
condition
is specified, then it must evaluate to true for the new row to be inserted.See
DeltaMergeBuilder
for complete usage details.- Parameters
condition (str or pyspark.sql.Column) – Optional condition of the insert
- Returns
this builder
New in version 0.4.
-
whenNotMatchedBySourceUpdate
(condition: Union[pyspark.sql.column.Column, str, None] = None, set: Optional[Dict[str, Union[str, pyspark.sql.column.Column]]] = None) → delta.tables.DeltaMergeBuilder¶ Update a target row that has no matches in the source based on the rules defined by
set
. If acondition
is specified, then it must evaluate to true for the row to be updated.See
DeltaMergeBuilder
for complete usage details.- Parameters
condition (str or pyspark.sql.Column) – Optional condition of the update
set (dict with str as keys and str or pyspark.sql.Column as values) – Defines the rules of setting the values of columns that need to be updated. Note: This param is required. Default value None is present to allow positional args in same order across languages.
- Returns
this builder
New in version 2.3.
-
whenNotMatchedBySourceDelete
(condition: Union[pyspark.sql.column.Column, str, None] = None) → delta.tables.DeltaMergeBuilder¶ Delete a target row that has no matches in the source from the table only if the given
condition
(if specified) is true for the target row.See
DeltaMergeBuilder
for complete usage details.- Parameters
condition (str or pyspark.sql.Column) – Optional condition of the delete
- Returns
this builder
New in version 2.3.
-
execute
() → None¶ Execute the merge operation based on the built matched and not matched actions.
See
DeltaMergeBuilder
for complete usage details.New in version 0.4.
-
class
delta.tables.
DeltaTableBuilder
(spark: pyspark.sql.session.SparkSession, jbuilder: JavaObject)¶ Builder to specify how to create / replace a Delta table. You must specify the table name or the path before executing the builder. You can specify the table columns, the partitioning columns, the location of the data, the table comment and the property, and how you want to create / replace the Delta table.
After executing the builder, a
DeltaTable
object is returned.Use
delta.tables.DeltaTable.create()
,delta.tables.DeltaTable.createIfNotExists()
,delta.tables.DeltaTable.replace()
,delta.tables.DeltaTable.createOrReplace()
to create an object of this class.Example 1 to create a Delta table with separate columns, using the table name:
deltaTable = DeltaTable.create(sparkSession) .tableName("testTable") .addColumn("c1", dataType = "INT", nullable = False) .addColumn("c2", dataType = IntegerType(), generatedAlwaysAs = "c1 + 1") .partitionedBy("c1") .execute()
Example 2 to replace a Delta table with existing columns, using the location:
df = spark.createDataFrame([('a', 1), ('b', 2), ('c', 3)], ["key", "value"]) deltaTable = DeltaTable.replace(sparkSession) .tableName("testTable") .addColumns(df.schema) .execute()
New in version 1.0.
Note
Evolving
-
tableName
(identifier: str) → delta.tables.DeltaTableBuilder¶ Specify the table name. Optionally qualified with a database name [database_name.] table_name.
- Parameters
identifier (str) – the table name
- Returns
this builder
Note
Evolving
New in version 1.0.
-
location
(location: str) → delta.tables.DeltaTableBuilder¶ Specify the path to the directory where table data is stored, which could be a path on distributed storage.
- Parameters
location (str) – the data stored location
- Returns
this builder
Note
Evolving
New in version 1.0.
-
comment
(comment: str) → delta.tables.DeltaTableBuilder¶ Comment to describe the table.
- Parameters
comment (str) – the table comment
- Returns
this builder
Note
Evolving
New in version 1.0.
-
addColumn
(colName: str, dataType: Union[str, pyspark.sql.types.DataType], nullable: bool = True, generatedAlwaysAs: Optional[str] = None, comment: Optional[str] = None) → delta.tables.DeltaTableBuilder¶ Specify a column in the table
- Parameters
colName (str) – the column name
dataType (str or pyspark.sql.types.DataType) – the column data type
nullable (bool) – whether column is nullable
generatedAlwaysAs (str) – a SQL expression if the column is always generated as a function of other columns. See online documentation for details on Generated Columns.
comment (str) – the column comment
- Returns
this builder
Note
Evolving
New in version 1.0.
-
addColumns
(cols: Union[pyspark.sql.types.StructType, List[pyspark.sql.types.StructField]]) → delta.tables.DeltaTableBuilder¶ Specify columns in the table using an existing schema
- Parameters
cols (pyspark.sql.types.StructType or a list of pyspark.sql.types.StructType.) – the columns in the existing schema
- Returns
this builder
Note
Evolving
New in version 1.0.
-
partitionedBy
(*cols: Union[str, List[str], Tuple[str, ...]]) → delta.tables.DeltaTableBuilder¶ Specify columns for partitioning
- Parameters
cols (str or list name of columns) – the partitioning cols
- Returns
this builder
Note
Evolving
New in version 1.0.
-
property
(key: str, value: str) → delta.tables.DeltaTableBuilder¶ Specify a table property
- Parameters
key – the table property key
- Returns
this builder
Note
Evolving
New in version 1.0.
-
execute
() → delta.tables.DeltaTable¶ Execute Table Creation.
- Return type
Note
Evolving
New in version 1.0.
-
-
class
delta.tables.
DeltaOptimizeBuilder
(spark: pyspark.sql.session.SparkSession, jbuilder: JavaObject)¶ Builder class for constructing OPTIMIZE command and executing.
Use
delta.tables.DeltaTable.optimize()
to create an instance of this class.New in version 2.0.0.
-
where
(partitionFilter: str) → delta.tables.DeltaOptimizeBuilder¶ Apply partition filter on this optimize command builder to limit the operation on selected partitions.
- Parameters
partitionFilter (str) – The partition filter to apply
- Returns
DeltaOptimizeBuilder with partition filter applied
- Return type
New in version 2.0.
-
executeCompaction
() → pyspark.sql.dataframe.DataFrame¶ Compact the small files in selected partitions.
- Returns
DataFrame containing the OPTIMIZE execution metrics
- Return type
pyspark.sql.DataFrame
New in version 2.0.
-
executeZOrderBy
(*cols: Union[str, List[str], Tuple[str, ...]]) → pyspark.sql.dataframe.DataFrame¶ Z-Order the data in selected partitions using the given columns.
- Parameters
cols (str or list name of columns) – the Z-Order cols
- Returns
DataFrame containing the OPTIMIZE execution metrics
- Return type
pyspark.sql.DataFrame
New in version 2.0.
-
Exceptions¶
-
exception
delta.exceptions.
DeltaConcurrentModificationException
(desc: Optional[str] = None, stackTrace: Optional[str] = None, cause: Optional[py4j.protocol.Py4JJavaError] = None, origin: Optional[py4j.protocol.Py4JJavaError] = None)¶ The basic class for all Delta commit conflict exceptions.
New in version 1.0.
Note
Evolving
-
exception
delta.exceptions.
ConcurrentWriteException
(desc: Optional[str] = None, stackTrace: Optional[str] = None, cause: Optional[py4j.protocol.Py4JJavaError] = None, origin: Optional[py4j.protocol.Py4JJavaError] = None)¶ Thrown when a concurrent transaction has written data after the current transaction read the table.
New in version 1.0.
Note
Evolving
-
exception
delta.exceptions.
MetadataChangedException
(desc: Optional[str] = None, stackTrace: Optional[str] = None, cause: Optional[py4j.protocol.Py4JJavaError] = None, origin: Optional[py4j.protocol.Py4JJavaError] = None)¶ Thrown when the metadata of the Delta table has changed between the time of read and the time of commit.
New in version 1.0.
Note
Evolving
-
exception
delta.exceptions.
ProtocolChangedException
(desc: Optional[str] = None, stackTrace: Optional[str] = None, cause: Optional[py4j.protocol.Py4JJavaError] = None, origin: Optional[py4j.protocol.Py4JJavaError] = None)¶ Thrown when the protocol version has changed between the time of read and the time of commit.
New in version 1.0.
Note
Evolving
-
exception
delta.exceptions.
ConcurrentAppendException
(desc: Optional[str] = None, stackTrace: Optional[str] = None, cause: Optional[py4j.protocol.Py4JJavaError] = None, origin: Optional[py4j.protocol.Py4JJavaError] = None)¶ Thrown when files are added that would have been read by the current transaction.
New in version 1.0.
Note
Evolving
-
exception
delta.exceptions.
ConcurrentDeleteReadException
(desc: Optional[str] = None, stackTrace: Optional[str] = None, cause: Optional[py4j.protocol.Py4JJavaError] = None, origin: Optional[py4j.protocol.Py4JJavaError] = None)¶ Thrown when the current transaction reads data that was deleted by a concurrent transaction.
New in version 1.0.
Note
Evolving
-
exception
delta.exceptions.
ConcurrentDeleteDeleteException
(desc: Optional[str] = None, stackTrace: Optional[str] = None, cause: Optional[py4j.protocol.Py4JJavaError] = None, origin: Optional[py4j.protocol.Py4JJavaError] = None)¶ Thrown when the current transaction deletes data that was deleted by a concurrent transaction.
New in version 1.0.
Note
Evolving
-
exception
delta.exceptions.
ConcurrentTransactionException
(desc: Optional[str] = None, stackTrace: Optional[str] = None, cause: Optional[py4j.protocol.Py4JJavaError] = None, origin: Optional[py4j.protocol.Py4JJavaError] = None)¶ Thrown when concurrent transaction both attempt to update the same idempotent transaction.
New in version 1.0.
Note
Evolving
Others¶
-
delta.pip_utils.
configure_spark_with_delta_pip
(spark_session_builder: pyspark.sql.session.SparkSession.Builder, extra_packages: Optional[List[str]] = None) → pyspark.sql.session.SparkSession.Builder¶ Utility function to configure a SparkSession builder such that the generated SparkSession will automatically download the required Delta Lake JARs from Maven. This function is required when you want to
Install Delta Lake locally using pip, and
Execute your Python code using Delta Lake + Pyspark directly, that is, not using spark-submit –packages io.delta:… or pyspark –packages io.delta:….
builder = SparkSession.builder .master(“local[*]”) .appName(“test”)
spark = configure_spark_with_delta_pip(builder).getOrCreate()
If you would like to add more packages, use the extra_packages parameter.
builder = SparkSession.builder .master(“local[*]”) .appName(“test”) my_packages = [“org.apache.spark:spark-sql-kafka-0-10_2.12:x.y.z”] spark = configure_spark_with_delta_pip(builder, extra_packages=my_packages).getOrCreate()
- Parameters
spark_session_builder – SparkSession.Builder object being used to configure and create a SparkSession.
extra_packages – Set other packages to add to Spark session besides Delta Lake.
- Returns
Updated SparkSession.Builder object
New in version 1.0.
Note
Evolving